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Supplementary Methods  

The Formulation of the Finite Element Method 

The finite element method has been used to solve partial differential equations since 1960 

(1). The most attractive feature of this method is the ability to handle complex geometric 

features in both two-dimensional and three-dimensional space with relative ease, because 

the discretization process is based on an abstract geometric domain Ω  (2). The process of 

finite element discretization for the diffusion equation with boundary conditions is 

presented in details here (3). The mathematical proof of the equivalence between the 

diffusion equation with BCs (see Eq. (S1)-(S2)) and the weak form (see Eq. (S4)), and 

the approximation property of the Galerkin discretization was described by Brenner et 

al.(4).  

 

The diffusion equation with boundary conditions (BC’s) is given by  
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According to the Crank-Nicholson Scheme, equation (S1) can be approximated by  
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Let 1n ndt t t+= − be the time stepping size, multiplying both sides of Eq. (S3) by an 

arbitrary test function v and integrating in the domain Ω, we have the equation in its weak 

form 
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Moving dt to the right hand side, integrating by parts and applying the boundary 

condition in equation (S2), we have 
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In the finite element method, a triangular mesh is built within the cell edge for the 

discretization of the weak form (Figure S1). Approximated by the Galerkin discretization, 

we solve for 1n
hu + in the space 1{ , , }mV span φ φ=  , such that  
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for every iφ  which is a piecewise linear function on the triangular mesh that has the value 

1 on the ith node of the mesh and the value 0 on all the other nodes. Because 
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  ; 

and converted to the matrix form with some rearrangement of terms: 
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where the mass matrix [ ]ij i jM m dxφφ
Ω

 = =  ∫ , the stiffness matrix 
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iu u= , and the vector of BC’s 
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and it is zero at internal boundaries (see “Sample MATLAB Scripts”, function 

estimate_diffusion_coefficient). When the boundary flux is zero, Eq. (S7) can be 

simplified, 
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In the FE method, the mesh size is an important factor that may affect the accuracy of 

image analysis and modeling. We have evaluated the effect of mesh size on the estimated 

apparent diffusion coefficient and the FRET images after diffusion subtraction. The 

results with varying mesh sizes (0.05-0.25 µm) were compared and confirmed to show no 

significant difference. Therefore, mesh sizes within the examined range should not have 

significant impact on the computational results. 

Pre-processing of FRAP Experimental Images 

All the images from FRAP experiments were background-subtracted and then processed 

using a modified adaptive filter with a window sized at 40 40×  pixels. This modified 

adaptive filter was constructed based on the low-pass adaptive filter wiener2 in the 

MATLAB image processing toolbox (The MathWorks) (5), which smoothes the noise 

adaptively based on the local variation of the image in the filter window. The boundary of 

the reference cell image was determined based on the fluorescence intensity, and used 



throughout the analysis, given the fact that the cells did not change locations and 

geometry significantly during the FRAP procedure. The filtered pre-bleach images were 

further smoothed with a temporal median filter to produce a reference image. The post-

bleach images were normalized by the reference image to convert the fluorescence 

images into concentration maps to eliminate the effect of geometric factors, such as depth 

of the cytoplasm and membrane folding. A second adaptive filter was further used to 

smooth out the normalized images. An additional median filter of size 3 was used in the 

temporal space where necessary. Linear fitting between the WDLC and the WCCT of 

these processed concentration images was used to calculate the apparent diffusion 

coefficients of different Src biosensors, which were then applied to simulate and predict 

the fluorescence recovery images to compare with the experimental data (Figure 6).  

 

Including Estimated Diffusion Coefficients in Statistical Analysis 

The relative error, norm(un - est_un)/norm(un), was used to quantitatively compare the 

estimated concentration map with experimental results, and to decide whether to accept 

or discard the estimated apparent diffusion coefficient and the coefficient of 

determination. Among the four groups of cells, 19 cells and 102 diffusion coefficients 

were included in statistical analysis. The coefficients of determination were discarded if 

the R values were negative and hence not physically relevant. Altogether 92 coefficients 

of determination were included in the statistics.  

 

Model Assumptions 



In the model for photobleaching images, we assumed a uniform diffusion coefficient in a 

two-dimensional space for different biosensors, with nonzero flux at the cell edge. All the 

initial conditions and time-space parameters were based on the experimental data. FE 

analysis and linear regression were applied to estimate the apparent diffusion coefficients 

of different biosensors. This model appears to fit the best with the motion of the Lyn-Src 

biosensor (Figures 10 and 11B), but not well with that of the cytosolic-Src biosensor.  

 

Sample MATLAB Scripts 

A software named ‘fluocell’ has been built to implement our FE-based diffusion analysis 

procedure. It can be obtained by writing to the corresponding author of this paper. Here 

we present some sample MATLAB scripts implementing the finite element discretization 

and linear regression. 

 

% Create the mesh, assemble the mass matrices and the stiffness matrices 

[p_image,edge,tri]=create_mesh(smaller_boundary,num_refine); 

p = scale_by_magnification(p_image,mag); 

[K, M] = assemble_matrices(p,tri); 

is_boundary = mark_mesh_boundary(p_image, edge); 

 

% convert concentration to solution vector 

num_nodes = size(p_image,2) 

u = zeros(num_nodes,num_steps); 

est_u = zeros(num_nodes,num_steps); 



r = zeros(num_nodes, num_steps); 

for i = 1:num_steps, 

    u(:,i) = concentration_to_vector(med_con(:,:,:,i),p_image); 

end; 

 

% Estimate diffusion constant and provide output. 

display(sprintf('%20s%20s%20s%20s',... 

    'diffusion coef', 'residual_1', 'R value')); 

dt = dt*num_images_per_layer; 

diff_const = zeros(num_steps-1,1); 

for i= 1:num_steps-1, 

    Mdu = M*(u(:,i+1)-u(:,i)); 

    dtKu = -dt*K*0.5*(u(:,i+1)+u(:,i)); 

    [diff_const(i) , est_u(:,i+1) , r(:,i+1), R] = ... 

        estimate_diffusion_coefficient(u(:,i),u(:,i+1),... 

        M,K,dt,is_boundary); 

    relative_residual_norm = norm(u(:,i+1)-est_u(:,i+1),2)/... 

        norm(u(:,i+1),2); 

    display(sprintf('%20f%20f%20f%20f', diff_const(i), ... 

        relative_residual_norm, R)); 

end; 

 

% Estimate the diffusion coefficient by linear fitting 



% Boundary flux is not zero at the cell edge 

% Compute the predicted concentration map based on the 

% linear diffusion model. 

function [diff_const, est_u2, r, R12] = ... 

    estimate_diffusion_coefficient(u1,u2,M,K,dt, is_boundary); 

alpha = 0.5;  

beta = 0.5; 

Mdu = M*(u2-u1); 

dtKu = -dt*K*(alpha*u1+beta*u2); 

one_over_D = Mdu\dtKu; 

diff_const = 1.0/one_over_D; 

r = Mdu-diff_const*dtKu; 

r0 = r.*is_boundary; 

est_u2 = (M+beta*dt*diff_const*K)\... 

    ((M-alpha*dt*diff_const*K)*u1+r1); 

[x,y] = average_data(Mdu, dtKu); 

 [R,P]=corrcoef(x,y); 

R12 = R(1,2); 

r = (r-r0)/(diff_const*dt); 

return; 
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