Fluorescent Proteins

Nathan Shaner

Planar molecules

Planar molecules
Extended π-orbital system
("conjugated")

Excitation

Relaxation

Emission

A few small-molecule dyes can be used directly for labeling, e.g. DAPI

Most of the time, you need an antibody against your protein of interest!

Mostly for fixed cells!

Secondary antibody

Live cells

Fluorescent Proteins

Incredibly diverse genetically encodable dyes

Structure

A little history

A little history

Aequorea victoria

Aequorea GFP

GFP (green)

Aequorea GFP

Discosoma RFP

Discosoma sp.

Discosoma RFP

DsRed.T1 tetramer

dimer2 (17 mutations)

Break A/B interface
Rescue fluorescence

Break A/C interface Rescue fluorescence

mRFP1 (33 mutations)

The "mFruits"

20 years ago

10 years ago

mNeonGreen

mKeima

mCitrine/ mVenus

mRuby2

mNeptune

"Regular" FPs

mKate2

EBFP2

many, many, many other good FPs

mTurquoise2

mEmerald + sfGFP, etc.

mOrange2 mKO variants
LSSmOrange

Photoactivatable

Photoswitchable

Don't forget to upgrade!

Chromophore diversity

Tsien (1998); Tomosugi et al (2009); Ai et al (2007)

Chromophore diversity

zFP538 x525/m538

mHoneydew x480-504/m537-562

mBanana x540/m553

mOrange x548/m562

LanRFP x520/m600

mCherry x587/m610

Chromophore diversity

Kaede (pre-conversion) x508/m518

Kaede (post-conversion) x572/m582

PSmOrange (pre-conversion) x548/m565

PSmOrange (post-conversion) x634/m662

What's important?

Brightness

Photostability

Wavelength

Switching/conversion kinetics

Fluorescent Proteins

Is it really a monomer?

LanYFP crystal structure *

Is it well-behaved?

What is "brightness"?

Brightness ~ Extinction Coefficient x Quantum Yield

What is "brightness"?

Extinction coefficient – how well does it absorb?

What is "brightness"?

Quantum yield – what fraction of excitations leads to emission?

Photostability

Beware when comparing photostability data!

Scale half-time to initial light output!

Advanced applications

Genetically-encoded sensors

Making a new sensor is not easy!

Circularly permuted FPs

Circularly permuted FPs

Single-color FP sensors

Single-color FP sensors

FRET

(Fluorescence/Förster Resonance Energy Transfer)

sensor domain

Mostly cyan (donor) emission

Mostly yellow (acceptor) emission

FP-X

(Fluorescent protein exchange)

RA (red 'A')

GA (green 'A')

B (non-fluorescent partner)

 $K_d \sim 40 \, \mu M$

Heterodimerization-dependent fluorescence

FP-X

RA (red 'A')

GA (green 'A')

B (non-fluorescent partner)

 $K_d \sim 40 \, \mu M$

Heterodimerization-dependent fluorescence

FP-X

Heterodimerization-dependent fluorescence