
FRET Live-Cell Imaging and Quantitation
Summer Workshop, 2015 

Fluorescence Microscopy : Fundamentals

Philbert S. Tsai

Philbert Tsai, FRET Workshop 2015



The Visible Spectrum of Light

Wavelength (nm)

Higher Energy Lower Energy

Shorter Wavelength Longer Wavelength

Philbert Tsai, FRET Workshop 2015



The Visible Spectrum of Light

Wavelength (nm)

Higher Energy Lower Energy

Shorter Wavelength Longer Wavelength

Philbert Tsai, FRET Workshop 2015



The Visible Spectrum of Light

Wavelength (nm)

Higher Energy Lower Energy

Shorter Wavelength Longer Wavelength

E  =  h * f    (Photon Energy = Planck’s Constant * Frequency)

E  =  h * c / λ

 h  =  Planck’s Constant  =  6.626 * 10-34 J*s

 c  =  speed of light   =  3 * 108 m/s
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E  =  h * f    (Photon Energy = Planck’s Constant * Frequency)

E  =  h * c / λ

 h  =  Planck’s Constant  =  6.626 * 10-34 J*s

 c  =  speed of light   =  3 * 108 m/s

 λ =  wavelength

1 photon @ 546 nm

E = 3.64 * 10-19  J*s

       so:

1 Watt = 1 Joule/sec 

         = 2.7 * 1018 photons / s
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Re�ectance spectra from colored paper

Original image source unknown

Spectra of sunlight
re�ecting o� of color
papers appearing : 

blue
green
yellow
orange
red
black

aside from slight
�uorescence in
the yellow paper,
colors operating
by re�ectance only
never peak above
100%
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Emission spectra for �uorescent markers (highighter pens)

Original image source unknown

Fluorescent markers
convert light from
lower wavelengths
to higher wavelengths.

green highlighter
yellow highlighter
pink highlighter

All three highlighters
have emiisions that
exceed the 100%
that would be possible
from re�ection alone.
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Fluorescence
Luminescence that is caused by the absorption of radiation 

at one wavelength followed by nearly immediate re-radiation 
usually at a longer wavelength.

Microscopy
An unfortunate series of compromises

that we are forced to make to look at very small objects.

• Resolution      • Speed

• Specificity      • Uniformity

• Signal to Noise     • Phototoxicity

      • $$$$



Energy levels for atomic spectra of hydrogen
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Absorption & emission spectra of �uorescent organic dyes

Fluorescein Rhodamine 6G Hoechst 33258
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Upright Microscope : Epi�uorescence Light Path

Figure adapted from http://zeiss-campus.magnet.fsu.edu Philbert Tsai, FRET Workshop 2015
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Optical schematic of an inverted epifluorescence microscope

Philbert S. Tsai, July 28,2010
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Bright�eld vs. Fluorescence Microscopy

Image taken from L.W. Miller and V.W. Cornish. Curr. Opin. Chem. Biol. (2005) Philbert Tsai, FRET Workshop 2015



Bright�eld vs. Fluorescence Microscopy

Image taken from L.W. Miller and V.W. Cornish. Curr. Opin. Chem. Biol. (2005) 

Cell-speci�c or subcellular-speci�c labeling

Bright signal on dark background

Ambiguous Signal

Small changes on a bright background

Philbert Tsai, FRET Workshop 2015



The Fluorescence Advantage : Signal on a Dark Background
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A noise-free, low-background signal
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The Fluorescence Advantage : Signal on a Dark Background

A shot-noise-limited signal with low-background 
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The Fluorescence Advantage : Signal on a Dark Background

A shot-noise-limited signal with slightly higher background 
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The Fluorescence Advantage : Signal on a Dark Background

A shot-noise-limited signal with high background 
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The Fluorescence Advantage : Signal on a Dark Background

A shot-noise-limited signal with very high background 
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The Fluorescence Advantage : Signal on a Dark Background

A shot-noise-limited signal with extremely high background 
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Modern Microscope Components

+
Image from Molecular Expressions webpage

Image from MicroscopyU webpage
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Imaging condition between scan mirror and back aperture of microscope objective
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Imaging condition between scan mirror and back aperture of microscope objective

Telescope lens con�guration provides collimated beam input and output

Philbert Tsai, FRET Workshop 2015



Data Acquisition
Raster Scan Imaging

Preampli�er

Ampli�er

Filter

Computer
Data Acquistion

Card

2D Image Data

Tim
e Serie

s D
ata

Photomultiplier
Tube

Image
Acquisition

Software
Philbert Tsai, FRET Workshop 2015



Philbert Tsai, FRET Workshop 2015



Some Relevant Parameters
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A quick & dirty calculation of saturation
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A quick & dirty calculation of saturation
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A quick & dirty calculation of saturation
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Why is saturation bad?
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Taken from Huang, et. al., Biophysical Journal., 2002
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Molar Extinction Coe�cients

Alexa Fluor 555 :  150000 cm-1 M-1

Fluorescein       :    70000 cm-1 M-1

eGFP    :    55000 cm-1 M-1 

NADH   :      6220 cm-1 M-1
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Time averaging to recover S/N
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Photobleaching

Taken from Patterson & Piston, 2000, Biophysical Journal 
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Confocal Laser Scanning Microscopy

Optical
Axis

In-focus �uorescence can scatter into the same
path as out-of-focus �uorescence, and be
blocked by the confocal pinhole.

This decreases the signal reaching the
detector.
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Confocal Laser Scanning Microscopy

Optical
Axis

Out-of-focus �uorescence can scatter into
the same path as in-focus �uorescence, and
pass through the confocal pinhole.

This increased background reduces the
signal-to-noise ratio.
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Two Photon Laser Scanning Microscopy

Optical
Axis

ΔZ

R(Z) = Radius

A = Area

ΔZ = Distance from Focal Plane

I = Intensity

P = Power

Fm = Fluorescence per Molecule

σ  = Dye Cross-section

Fp = Fluorescence per Plane

TWO PHOTON EXCITATION

R(z) ~  ΔZ 

A ~ R2 ~ (ΔZ)2

I = P / A

Fm = σ*I2 = σ*P2/A2 = σ*P2/(ΔZ)4 

Fp = Fm * A = σ*P2/A ~ σ*P2/(ΔZ)2

For two photon excitation, the 

fluorescence per plane falls quadratically 

with distance from the focal plane !

R(z) 
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Confocal Laser Scanning Microscopy
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R(Z) = Radius

A = Area

ΔZ = Distance from Focal Plane

I = Intensity

P = Power

Fm = Fluorescence per Molecule

σ  = Dye Cross-section

Fp = Fluorescence per Plane

SINGLE PHOTON EXCITATION

R(z) ~  ΔZ 

A ~ R2 ~ (ΔZ)2

I = P / A

Fm = σ*I = σ*P/A = σ*P/(ΔZ)2 

Fp = Fm * A = σ*P

For single photon excitation, the 

fluorescence per plane is independent 

of distance from the focal plane !

R(z) 
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P = Power

Fm = Fluorescence per Molecule

σ  = Dye Cross-section

Fp = Fluorescence per Plane

TWO PHOTON EXCITATION

R(z) ~  ΔZ 

A ~ R2 ~ (ΔZ)2

I = P / A

Fm = σ*I2 = σ*P2/A2 = σ*P2/(ΔZ)4 

Fp = Fm * A = σ*P2/A ~ σ*P2/(ΔZ)2

For two photon excitation, the 

fluorescence per plane falls quadratically 

with distance from the focal plane !

R(z) 
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Jablonski Energy Diagram
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Two Photon Laser Scanning Microscopy
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Confocal Laser Scanning Microscopy
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Kohler Illumination
Dual Light Paths

Illumination Conjugate Planes    Sample Image Conjugate Planes
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Kohler Illumination
How do we best illuminate the sample?
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Kohler Illumination
E�ect of Aperture Diaphragm on Contrast and Resolution

Image take from Olympus Microscopy Resource Center Website

Photomicrograph of Plum Tree Stem infected with Black Knot Fungush 

Objective NA = 0.75
Condenser NA = 0.90

Objective NA = 0.75
Condenser NA = 0.18

Objective NA = 0.75
Condenser NA = 0.54
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Kohler Illumination
Light Pathways in an upright microscope

Image take from Olympus Microscopy Resource Center Website
Philbert Tsai, FRET Workshop 2015



Kohler Illumination
Light Pathways in an inverted microscope

Image take from Olympus Microscopy Resource Center Website
Philbert Tsai, FRET Workshop 2015



Optical schematic of an inverted epifluorescence microscope

Philbert S. Tsai, July 28,2010
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PN Semiconductor Junction
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CCD Chip Layout
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Charge Coupled Device (CCD) Charge Transfer
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Temperature Sensitive of CCDs (Dark Current)
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Electron Multiplied Charge Coupled Device (EMCCD)

Per Transfer Gain ~ 1.02
but over 500 transfer
Total Gain is > 1000x
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Intensi�ed Charge Coupled Device (ICCD)

Taken from Andor.com
Philbert Tsai, FRET Workshop 2015



Charge Coupled Device (CCD) Technologies

Taken from emccd.com
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Taken from Hamammatsu

Photo Multiplier Tube (PMT)
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Photo Multiplier Tube (PMT)

Taken from Hamammatsu
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Photo Multiplier Tube (PMT)

Taken from Hamammatsu
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GaAsP PMTs
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Data Acquisition

Preampli�er

Ampli�er
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Computer
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Time Series Data
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Data Acquisition
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Data Acquisition
CCD Camera Imaging

Computer
Video

Capture Card

2D Image Data

Time Series Data
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Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Nyquist Sampling Theorem
How often should you collect data?

Philbert Tsai, FRET Workshop 2015



0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Nyquist Sampling Theorem
How often should you collect data?

Philbert Tsai, FRET Workshop 2015



Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



Nyquist Sampling Theorem
How often should you collect data?

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Philbert Tsai, FRET Workshop 2015



THIS PAGE INTENTIONALLY LEFT BLANK
(with the exception of the text declaring this page to be blank)

Philbert Tsai, FRET Workshop 2015



THIS PAGE INTENTIONALLY LEFT BLANK
(with the exception of the text declaring this page to be blank)

Philbert Tsai, FRET Workshop 2015



E (r, t)  =  Eo sin( k . x - t . t + q)

 t  =  2/ . f
  f   =  1 / T
  k  =  2/�
�h 

Nature of Light
Light can be described as a traveling electromagnetic wave

E

Eo

Eo

time

space

angular frequency
frequency
wave number
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Nature of Light
Light can be described as a traveling electromagnetic wave
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which is a solution to the wave equation:

c = speed of light in vacuum

c  =  f . h   =  t / k

I = Intensity = (c . ¡o . n / 2) . | E |2
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Nature of Light
Light can be described as an traveling electromagnetic wave

Double Slit
Diffraction Experiment 
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Linearly Polarized Light
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Linearly Polarized Light
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Linearly Polarized Light
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Linearly Polarized Light
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Linearly Polarized Light
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Linearly Polarized Light
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Circularly Polarized Light
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Circularly Polarized Light
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Sense of Scale

100 μm

20 μm

7 μm Red Blood Cell

Pyramidal
Neuron

Human
Hair

Philbert Tsai, FRET Workshop 2015



Sense of Scale

100 μm

20 μm

7 μm Red Blood Cell

Pyramidal
Neuron

Human
Hair

Philbert Tsai, FRET Workshop 2015



Sense of Scale

20 μm

Red Blood Cell (7 μm)

Pyramidal Neuron Cell Body (~10 μm) Bacterium (1 x 5 μm)

20 cycles of green light
 (λ = 0.5 μm)
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Sense of Scale

700 nm

400 nm

200 nm bead
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Sense of Scale

200 nm bead 4 nm
Green Fluorescent

Protein

2 nm
Fluorescein

MoleculeMolecule

75 nm Virus Particle
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Modern Microscope Components

Image from Molecular Expressions webpage
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Modern Microscope Components

+
Image from Molecular Expressions webpage

Image from MicroscopyU webpage
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Modern Microscope Components

+
Image from Molecular Expressions webpage

Image from MicroscopyU webpage
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Kohler Illumination
Light Pathways in an upright microscope

Image take from Olympus Microscopy Resource Center Website
Philbert Tsai, FRET Workshop 2015



Kohler Illumination
Light Pathways in an inverted microscope

Image take from Olympus Microscopy Resource Center Website
Philbert Tsai, FRET Workshop 2015



In�nity-Conjugate vs. Finite-Conjugate Microscopes

Images taken from Davidson & Abramowitz, Optical Microscopy
Philbert Tsai, FRET Workshop 2015
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